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Abstract. The theory of quaternionic w-hypetholomorphic functions (synonyms: monogenic,
regular, spatial holomorphic vectors) is cusrently developing rapidly. In particular, many integral
formulae with explicit reproducing kernels have been obtained. In this work we establish a
one-to-one correspondence between time-harmonic (= monochromatic) electromagnetic fields
and pairs of ‘mutually conjugate’ hypesholomorphic functions, This leads to the Cauchy-type
integral associated with Maxwell’s equations. Some main integral formulae for Maxwell’s
equations involving this Cauchy-type integral are obtained. It should be mentioned that, in fact,
we introduce and study a somewhat more general guaternionic object which has better algebraic
and analytic properties than the ‘physical’ Maxwell operator and which contains the jatter as a

special case.

0. Introduction

Since J C Maxwel] wrote and published his famous equations, they have been investigated
in a large number of works. There probably exists no fewer works generalizing these
equations in many diverse directions. There is no need to spend many words explaining
the reasons for such phenomena, they are evident: the importance of the subject. At the
same time, the necessity of studying the equation for more than a century bears witness to
the absence of a sufficiently complete theory for Maxwell’s equations.

In the present work we make an attempt to construct a function theory associated with the
monochromatic (in the literature the synonym ‘time-harmonic’ is often also used) Maxwell
equations with constant coefficients, in the framework of exploiting hypercomplex function
theory.

Various hypercomplex approaches to stadying the classical Maxwell equations have
more than a century of history, starting from the work of Maxwell himself (which sometimes
surprises both mathematicians and physicists). There exists a well known reformulation of
these equations in vacuum in quaternionic terms (see e.g. [34,35,16,30,17, 1, 191), which
allows some fundamental physical laws to be rewritten in a space-saving form. This is the
very case in which such a phenomenological simplification is a real discovery influencing
the development of a physical theory,

Formally, this leads to a partial differential operator with quaternionic coefficients which
has a null-set containing all solutions to the Maxwell equations. So the problem arises as to
whether this null-set possesses a well-developed function theory. The latter means a deep
structural analogy with one-dimensional complex analysis which provides, first of all, for
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the existence of an integral representation for the null-solutions with a good analogue of the
complex Cauchy kernel. Only in this case can we expect to get a theory (almost) as rich
as the theory of holomorphic functions of one complex variable,

For many specific radio engineering, hydroacoustical and geophysical models it
is natural and quite sufficient to limit the study to the time-harmonic case (see e.g.
[14,28,6, 18, 10,15, 7] and many other books and articles). The main reason is contained, in
fact, in the Fourier analysis together with the principle of superposition: an electromagnetic
wave is a superposition (or, in other words, a linear combination, finite or numerable)
of elementary, periodic-in-time waves. Of course, technically the time-harmonic case is
sunpler but at the same time, even for that case, many profound physical properties are
not understood and explained. For example: the behaviour of the electromagnetic vector
field near and on the boundary of a spatial domain until now has been far from having a
sufficiently complete description. Most of what is known is contained in [6], see also the
‘less rigorously mathematical’ book [36] where many interesting results and ideas can be
found. It is written in traditional vectorial language (as is [6]) but there are some important
hints as to how to develop the corresponding hypercomplex approach.

The main difference between our work and that mentioned above [34,16,17,1)
and others in this direction, consists of the following. We not only rewrite the
Maxwell equations in a space-saving form (which generally speaking would not give
essentially new information) but also with the aid of a simple matrix transform we
imbed the time-harmonic electromagnetic field theory, which is difficult to treat, into the
sufficiently developed {29, 12, 13,27, 35,4, 31,23-25,21, 26] theory of a-hyperholomorphic
bignaternionic functions. This allows new facilities for solving the boundary wvalue
problems arising in electrodynamics because, following the deep structural analogy with
one-dimensional complex analysis and having the Cauchy-type operator associated with
Maxwell’s equations (see section 3), one is able to analyse and to solve the analogues of
the Riemann and Hilbert problems as well as some inverse problems {11] for electromagnetic
fields. For some results in this direction we refer the reader to [26].

Let H(C) denote the algebra of complex quaternions (precise definitions and some
properties are given in section 1), and let §2 be a domain in R?,

In a series of our works [23-26] (see also [21]} we have constructed a function theory
for the null-solutions of the operator

3
]
¥p, = E s M 0.
o £ ":[’k axk -+ ( 1)
where & € H(C), M® denotes an operator of multiplication by & on the right, and the set

¥ = {}, 2, 3} is chosen in such a way that ensures a factorization of the Helmholtz
operator: if

3
, 2
YDy = M® - Yy r — (0.2)
then
v’Da - ‘ﬁDa = ‘I{Da . 'pDa = Mﬂ: + Aps (03)

A} being the Laplacian in R>.

It appears that this function theory alone (we call it a (i, &)-hyperholomorphic function
theory) possesses all the necessary peculiarities of one-dimensional complex analysis.
Moreover, as was shown in {23, 20, 21,26], each component of the electromagnetic vector
field (£, H) is a linear combination of two purely imaginary quaternionic functions: one
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of which is a null-solution of (0.1); and the other a null-solution of its conjugate (0.2), for
some specific value of w.

Thus we have reduced a theory of monochromatic solutions of the Maxwell equations
to hyperholomorphic function theory which conserves all the essential properties of one-
dimensional complex analysis, and so these properties can be obtained for monochromatic
waves,

It is important to mention that, in fact, we treat a somewhat more general quaternionic
object (for obvious reasons we call it the quaternionic Maxwell operator). It has better
algebraic and analytic properties compared with the ‘physical’ Maxwell operator, and it
contains the latter as a special case.

Besides the introduction, the work consists of three sections. Section 1 contains a
very brief description of the common Maxwell eguations. Some necessary functional
spaces are also introduced. Section 2 contains the necessary mathematical tools. The
definition and basic properties of complex quaternions are given. Then we explain what
an ¢-hyperholomorphic function is together with its main properties. Let us stress that for
@ £ 0 all this is quite new, and it is almost unknown both among mathematicians and
physicists. Just for this reason we put it in a special section.

Section 3 is central, First of all we establish an explicit connection between the Mazwell
operator and a pair of ‘mutually conjugate’ quaternionic operators of the Cauchy-Riemann
type which generate the exact analogues of the usual holomorphic (= analytic) functions of
one complex variable. Then in theorem 5 the null-set of the three-dimensional Helmholtz
operator is decomposed into the direct sum of two functional spaces each of which is a
‘rotated’ nuli-set of the quaternionic Maxwell operator. In theorem 7 the variants of the
Cauchy integral theorem for the Maxwell functions are formulated. Then we introduce
the analogues of the Cauchy-type operator and T-operator corresponding to Maxwell’s
equations. Finally we give three theorems which show how the introduced operators work.

1. Maxwell’s equations

Let  denote a domain in R®, and iet £ and H be the corresponding electrical and
magnetic components of an electromagnetic field in €. We assume that a medium in £
is homogeneous and that there are no currents and charges in £2. If an electromagnetic
field (E, H) is time-harmonic (or monochromatic which is a synonym) then it satisfies the
following Maxwell equations:

ot H =oF ot E =iwpH (1.1
divi =0 divE =0 (1.2)
where ¢ = o" — iwe is the complex electrical conductivity; € is the dielectric constant;
M is the magnetic permeability; o* is the medium electrical conductivity which is inverse

to its electrical resistivity: ¢* = p~!. It is known also that in this sitvation the complex
vector fields B and H satisfy the homogeneous Helmholtz equations:

AE+AE=0 (1.3)
AH+1H =0 (1.4)

where ) 1= iouo* + wlpe = iwuo € C, o := /A(Rea > 0) is a medium wavenumber.
For any vectors f and g by the definitions

3
(f.g)=) haeC (1.5)
k=1
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iy i i
f.gl:i=|fi R f|eC. (1.6)
g1 g2 £3

(1.5) and (1.6} are called, as in the case of real coordinates, the scalar and vector (= cross)
product respectively. Equality (1.5) defines a C-valued bilinear form over C, the equality
(1.6) defines a C3-valued bilinear form over C.

Remark. 1t is easy to see that the equalities (1.2) are deduced directly from (1.1), and
so there is no need to include them in the Maxwell system. However, in many physical
sources, books and articles, the equations (1.2} are included explicitly, and we follow this
tradition here.

Let us remember that any solution of the systern (1.1)(1.2} is ‘orthogonal’ with respect
to the bilinear form (1.5):

(B, H)=0 (1.7)

(see the proof, e.g., in [15]).
Equation (1.1) can be rewritten in the matrix—vector form

¢ —~rot B
(rot —iw,u,) (H)=0 (L8)

and hence we can consider the operator defined by the matrix on the lefi-hand side of (1.8):
M= ( o ot ) 1.9)

ot —iwg

Its natural domain is C'(S%; C* x €3). Taking into account (1.2) let us introduce for
EeNU0)

EF 1= CH(; CF x € := {(F, OF. g) € C* x C3; div f = divg = 0}, (1.10)
We will call the operator
M= MIE? (L1

the time-harmonic Maxwell operator. It is essential to note that A maps a solenoidal
(= divergenceless) vector into 2 solenoidal one reducing the smoothness: if (f.g) € ¢z,
(u, v) t= MI(f, g)] then (u, v) € €.

2. Basic facts of hyperholomorphic function theory

Let H be a set of the real quatermions. This means that elements of H are of the form
a=Yi.qaniz, where {a |k € N9 := N3 U[0); N3 := {1, 2,3}} C R; ip is the unit; 11, i, I3
are called the imaginary units, and they define arithmetic rules in H: by definition i} = —ip,
k € N3; his = —iaiy = Iy, Iyly = —isls = iy, I3i) = —i)i3 = s,

Natural operations of addition and multiplication in H turn it into a non-commutative
field (= a skew ficld). There is a main involution in H called the quaternionic conjugation,
and it plays an exceptionally significant role. This involution is defined in the following
way:

;:0 = ip IT,Q = —I} kel
and it extends onto H by R-linearity, that is, for a ¢ H

3 3 3
di=) mh=) ah=a-Y ai = Z@) 2.1)
k=0 k=0 k=1
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Note that
3
d-a=a-d=p a =|alp = laff. (2.2)

Therefore for ¢ € H\{0} a quaternion a~! '= L1z = 1.5 is an inverse to a. We should
q ud lal

mention also the very important property of the quaternionic conjugation: for ¥{a, b} C H
ab=b-a (2.3)
or
Z{a - by = Z(b) - Z(a). 2.4)
For our purposes we need the notion of a complex quaternion. The set of complex
quaternions JH(C) consists of the elements a = Ziﬂ}ak - f; where {i;} is as described
above, {a;} C C, the set of usual complex numbers with the imaginary unit {. By definition
iy =idg-i k e NY,
Arithmetic rules are defined in H(C) just as in H. It is obvious that I is a real subalgebra
in H{C). Each element a € FH(C) can be represented in the form
a=aV +i.a® =aW 449§ @235

where {a'V, 2@} c H.
Conjugation acts only on the quaternionic units, not on {, in (2.1). The properties
(2.3)~(2.4) remain true but instead of (2.2) we have

3
ad = aa = Zaf = 1a®)? - [a?? + i(@Va® + aPa))

= [aWP —1a?? +2i{aP,a® e C (2.6)

where |a®| stands for the usual module of a real quaternion (see (2.2)), (a'??, a®) a scalar
praduct of two four-dimensional vectors. (2.6) means that

3
a-a#lafge =) lal® = 1aVF + 1a®P
k=0

and that H(C) has zero divisors. The set of all zero divisors we denote by &, ie.
G :=[a € H(C)|la # 0; 36 & 0:ab = 0}.

Let GH{C) denotes the group of invertible elements from H(C): GH(C) := H{CNGU{0}.
Then for any a € GH(C) the quaternion a~! := g/(ad) is its inverse.

From representation (2.5) it clearly follows that the set of complex quaternions is
isomorphic as a real vectorial space to the set of octonions (Cayley numbers). So the
difference between the sets lies on the algebraic level. By the definition of octonions
the additional imaginary unit { anticornmutes with iy, ¥ € N3 and, as a consequence, the
algebra of octonions does not enjoy the property of associativity against the algebra of
complex quaternions (see, e.g., [32,91).

Denoting for @ € H or a € H(C)

3
ay =: Sc(a) a:= Za;‘ <y = Vect(a)
k=1

we can write

a=ap+a.
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ag is called the scalar part of a quaternion a. @ is called the vector part, or the purely
imaginary part. Using the notation (1.5)—(1.6) we have, for any complex quaternions a and

t

a-b={a+a) (bo+b)

= ay - bp — (@, b} + apb + boa + [a, b]. )
This equality takes the most impressive form if g = by = 0:
a-b=—(a,b}+[a,b]. (2.8)

Equality (2.8) contains three types of multiplication of three-dimensional vectors, and it can
be used to imply and to explain all the rules of scalar and vector products.
We shall consider Hi(C)-valued functions defined in £:

fi2 - HO).

The notation CP(2; H(C)), p € NU {0}, has the usual component-wise meaning. If @ is a
fixed H(C)-valued function, then M* and M are the operators defined on a set of functions
{f} by the rule

M f]:= fa “M[f]:=af.

Let ¥ = {y', %% 3} ¢ H and Sc(¥') = Se(¥?) = Se(¥?) = 0. Thus ¢ is a set
of three-dimensional vectors. Assume, in addition, that ¥ is an orthonormalized system.
Sometimes we shall call 1 a structural set. On a set C'(Q; H(C)) define the operators ¥D
and DY by the equalities

3 af 3

¥DIf) = ; k. e glj v Blf) (2.9)
3 3 3

Nm:;ﬁaw:;mnw. 2.10)

Let A be the three-dimensional Laplace operator: A = ZZ=; 82, Define A on the H(C)-
valued functions by the equality

3
Alf1:= " ALfilix.
k=0

Then on C%($Y; HI(C)) the following equalities are true:
A="YDVp=—¥D¥p = DYD¥ = —D¥ DV @11

For details see, for example, [33].

Let A € C\{0} and let @ denote an arbitrary fixed square root of A in H(C), ie. a
solution in H(C) of the equation &? = A. This A generates the three-dimensional Helmholtz
operator

Ay i=A4 A (2.12)
which acts on C*(€2; H(C)). For an arbitrary fixed set y and for the above stated « let us
introduce the operators

VD, i= M® + YD ¥D, 1= M — VD (2.13)

oDV ="M + D¥ DY =M - DY, (2.14)
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We shall call the operators (2.13) the left mutually conjugate Cauchy-Riemann operators
and, for the operators (2.14), the word ‘left” changes for ‘right’. From (2.11) it follows that
the following equalities are true:

A,=¥D, YDy =D, ¥D, = ,0¥. DV = ,D¥. ,D¥. (2.15)
They give the factorization of the Helmholtz operators with a complex parameter A. Thus a
family (depending on the parameters ¥ and o} of the operators (2.13) and (2.14), factorizing

the Helmholtz operator, is obtained.
Let us fix ¥, o, £ and introduce the sets

YO, (2 H(T)) := ker VD, <Y (2; H(C)) := ker . DY. (2.16)

Sometimes, elements of these sets will be referred to as left- (correspondingly right-)
(yr, a)-hyperholomorphic in QH(C)-valued functions; this name will be shortened if
misunderstanding cannot arise. The sets (2.16) will be called the classes of (i, c)-
hyperholomorphy shortly. Any such left (correspondingly right) class forms a right
(correspondingly left) {ca|c € C)-submodule of an H(C)-module C'(Q; H(C)). 1t is clear
that for some special values of ¢ this fact could be specified.

The equalities (2.15) mean that (1, a)-hyperholomorphic functions of a class C? are
metaharmonic in 2, that is they belong to ker A,;.

Investigation of the time-harmonic Maxwell operator requires us to consider, as a rule,
the case ¥ = ¥y = {i1, i3, {3}, for which we will use notation

WD, =: "D, =: D, oDV = oD =1 4D
¥ap, =: %D, =: D, oD% =  DF = D

For this special case the vector representation of a quaternion (see earlier) gives rise to the
following representation of the operators ¥ and %D,,: for ¥Vf € CY(Q; H(C))

(2.17)

Dif1= il = i (ot
f =L v _k=1“c3m< Jfo+ F)

2 8f /. AF\ <], of
= ikg‘)‘c‘%—;(lk,a—m)"rz*}ha}

= =1 =1

= grad fy — div f 4+ rot f. (2.18)
Hence
Dolfo+fl=—divf—(f,a)+apfo+grad fp+rotf+[f, al+ fo-ax+ao- f.

(2.19)
In what follows let 0 £ L e C, ¢ € C.

Theorem 1. 23], Let H,(Q, H(C)) := ker A, be the space of metaharmonic functions;
denote ¥mr, 1= L ¥ Dy, ¥T1p 1= Yo |H,.
Then
(1) The following correlations are true:
(@) YT = ¥,
(b) Wﬂa ' ’f;‘_ﬂﬂ = Jrna ' wna = 0'
(c) YT, + Y1, = I, the identity operator,
(d) }( T = ker(P 7| C2); ]
(ii) For YHy 1= Yo (H.), Ha = YHy @ VH,;
(iii) ¥ Hy = ker(¥ m,JC%);
(iv) Hy = IR, @ VI,
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Theorem 2. (The Stokes formula congruent with the notion of (¥, a}-hyperholomorphy.)
Let {f, g} C C'(£2; H(T)). Then
(i)
GD¥(gl - f+g- ¥Dalf]~ 205 - fldx
d(E'%x-f)=[ . ;
(«D¥121f — g - ¥Dalflydx
(ii)

f GD¥Ig1() - £O0) + 8(x) - YDul F1() — 2ag(x) f(x)) dx,
f g(0) - oyx - FlX) = _
r fg WDVig) f ~g- "DuLfDdx

where oy = Yo  (—1¥"'y*di* and di* denotes, as usual, the differential form
dx) A dx® A dx?® with the factor dx* omitted. (Note that if dI" is an element of the
surface area in R? then loy | = dI’ and if " is a smooth surface, then

3
Oy, x = Z ¥ (x)dlr
k=1

where n = (n;, n3, n3) is a unit vector of the outward normal on I' at the point x € T".)

Theorem 3. (Variants of the Cauchy integral theorem for (i, @)-hyperholomorphic
functions.)

@) Let f € YO, (S H(C), g € MY (Q; H(C)). Then

d(g-oyx-H=—2-8-f
dloy: - f)=—afdx
d(g - oy) = —agdx.

(ii) For the same functions

f 80X - Oy - f() = —20 f g(x) - F(x)dx
r ]

o 100 =~ fﬂ fx)dx

fg(x) Opx = —otf glx)dx.
r 2
(i) If f & Y90y, g € MY then

[#6 oy s =0
Let 6% denote the fundamental solution of the Helmholtz operator:

1 .
* = k] 3
87 (x) i ]xle x € R\{0} (2.20)

where @2 = A, Rea > 0. In particolar, for @ = 0 we obtain 6 = 8, the fundamental
solution of the Laplace operator. For the calculations, the following correlation which can
be easily obtained is useful:

!
BE(x) = Bo(x) F ier— + o(lx])
T
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when (x| — 0. Below 6, := 6, participates only, For 6, all can be done by analogy.
Now the fundamental solution (= the Cauchy kernel for the corresponding theory) of
the operator ¥Dy is given by the formula

Kya(x) = «D716,1(x) = ¥ Dol6,](x)

= Tfi-é--(a-lxlz-i-(iaix[-{-l)-gwk -xk) - 6,(x). 2.21)
This Cauchy kernel generates, as usual, two important integrals:
VKol f1(x) := — [F Kyalx — 1) 0y - F(T) 222
and
VI flx) = fg Ky .o(x — 1) f(z)dr. (2.23)

The following propositions hold,

Proposition 1. (The Borel-Pompeiu (= Cauchy—Green) formula for (i, a)-b.h.f. theory.)
Let §2 be a bounded domain in R® with a Liapunov boundary I' = 3; f € CY(@; H(CHN
C(; H(C)). Then

Fy = YEJLAI) + ¥ Ty YD1 7100 for Vx € Q. (2.24)
Proposition 2. Let f € CO* ()N C(),0 < 1 < 1 then in
YDy - YT F1x) = Flx). (2.25)

Proposition 3. (Cauchy integral formula.} If f satisfies the condition of the Borel-Pompeiu
formula and f € Y9, () then

Fx) = YK [F1(x) for Vx € Q. (2.26)

Remark. For the case ¢ = 0 the above theorems have been known for a long time (see,
e.g., [3] as well as 8] for the Clifford algebra-valued functions),

3. Relationship between the time-harmonic Maxwell operator and the quaterniomic
Cauchy-Riemann operators

There exists an intimate connection between the time-harmonic Maxwell operator M
and the Cauchy-Riemann operators D,, Dy.—and hence between the time-harmonic
electromagnetic fields and hyperholomorphic functions. We now start to discuss this

connection. )
Equality (2.18) means, in particular, that on the sclenoidal vector fields I acts as the

operator rot: if fy = Og, div f = 0 then
D[fl=rotf. (3.1)

This pushes us to introduce the following matrix operator {compare with (1.9)):

D

We will call it the quaternionic Maxwell operator. Iis restriction A onto €2 x C3-valued
functions has the form

- o; div — rot
N—(—div+rot; —iwp )

N = (" —_ic?u) : C1(§2; H(T) x H(C)) - CY(Q; H(C) x H(T)). (3.2)
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and hence does not coincide with M (moreover, N maps such functions onto H(C) x H(C)-
valued functions). But the restriction NV|C! gives just M:
M=NIE. (3.3)

In particular, this justifies, in our opinion, the name ‘quaternionic Maxwell operator’
for A/, Functions from the ker N will sometimes be called ‘quaternionic monochromatic
functions’ and the notation () will be used.

We can now establish the connection between the operator A/ and the mutually conjugate
Cauchy-Riemann operators introduced earlier. Indeed, denoting

) @ -c 1fo! —g-!
A= (_a _J) B, '”E(a-‘ a_]) (34)

(both matrices are invertible) we can easily verify the equality

AI‘N'B]=(%H DO) (3.5)

Multiplying both sides of (3.5) by the matrix (? é) on the left-hand side and on the

right-hand side we arrive at

Ay N By = (‘% —DO—) (3.6)

with the invertible matrices

(o -0 1 f—g™l g-!
Az.—(a_ —o‘) Bz-—z(a-l a"l)' 30

A comparison of (2.5), (3.5) and (3.6) leads to the equality

_fA+A 0
Al‘N-Bi'AZN-Bz—( 0 A—i—l) (3.8)
or, equivalently, to the equality
2 [(A+A 0
(AN'B) —( 0 A +JL) (3.9)

with

A =4 BZ=B]-((I) (1))

Let E,, denote the unit (m x m) matrix. Equality (3.8) can be considered as the factorization
of the Helmholtz operator (A + A) - E3, acting on H{C) x H(C)-valued functions, into the
product of two operators AN By and AN B, each of them being similar to the quaternionic
Maxwell operator N. Equality (3.9) shows that the other operator, being similar to A,
namely, the operator ANB, is a square root of (A + A)Ea.

Theorem 4. (Connection between the sets of quaternionic monochromatic functions and
quaternionic hyperholomorphic functions.) Let 91 := ker N be the set of ali quaternionic
monochromatic functions, 90, (£2) be the set of all left-«-hyperholomorphic functions. Then

N =By - (M x o)
1 1 -
(-0 5 +0) 0 € Mo x ) @.10)

where the invertible matrix B; is given by (3.7).
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Of course this assertion, being important by its significance, is a very simple corollary
of (3.5).

Theorem 5. Let Hy? = ker(A + A)E> be the set of all metaharmonic H(C) x H(C)-valued
functions. Let

i 1
= —A == .
9= 5 1N By G2 ZaAzNBz (3.11)
and
0 = qHP Q2 = g H2. (3.12)
Then:

(i) The following correlations are true:
(2) 0 = 0s; 0% = 0a;
0 21 02=02- 1 =0
© Q1+ Q=1 ;
(d) range (Q1) = ker(wy|C?) X ker(alc?) = Hy X Ha, range (Q7) = ker(#,|C?) x
ker(mmy |C?) = Hy X Hys
(ii) For Hy 4 1= 01 (HP); Hag 1= Q2(HD)
Hf} =H,a ® Hog
holds. ‘
(iii) Hy,o = ker(ga|C2); Hae = ker(g)|C?);
(iv) HP = ker(g2|C2) @ ker(g1]C?) = By (ker(N|C?) @ B[ (ker(N|C2).
Equality (3.2) defining the quaternionic Maxwell operator contains the left operator D.
This results, in particular, in the fact that in (3.5)-(3.6) we have just the left mutually

conjugate Cauchy—Riemann operators. Of course we can obtain, completely symmetrically,
the ‘right-hand side’ results. Denote by N the right quaternionic Maxwell operator:

(r) L o _DSt
NO = ( S o).

The following equalities are true:

Dt 0
AN B = (uo am)
uDSt 0

Az'N(r]'Bﬁ=( 0 ﬁst)
o

where A;, A;, By, B, are from (3.4) and (3.7). It is easy to write the analogues of equalities
(3.8)—~(3.9) and theorems 4 and 5. In addition to the already introduced multiplications, we
shall need below the usual multiplication of matrices. Let us denote this operation by “’.

Theorem 6. (Variants of the Stokes formula congruent with the notion of the quateraionic
Maxwell function.) Let f = (f', 9. g = (g}, g%, (f, g} € CH&; H(C) x H(T)).
Define &y = (oy; a,,;}. Then
M) d((B;' 0g) %Gy x (B5 0 f)) = (A20 N 0 g) @ (B o )+ (By ' og) % (A20 N o
f)— 20ig » f)dx; in particular, if £ := (oﬁ’ ) then substituting subsequently g := / and
[ =h we get

(2) d(@a* (B; o f)) = (a By o f+ A20NTf] - (2?2)) dx
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(b) d(B;" 0 g) #5) = (a By og+ Az o NO[g] — (232)) dx

(ii) d((B; 0g)»ux (B 0 F)) = ((A2o N og)*(B; o f)—(By og)#(A1oNo f)) dx
in particular, we have
(@) d@u* (B o f)) = (a- B o f — Ato N[ f])dx
(b) d((B;' 0 g) %Gy) = (A2 o NV[g] - - By o g)dx
Gi)) [r(B o g) #8u# (By o f) = [((A2o N [g)))» (By o f(x)) + (By 0 g) »
(Az 0N o f) —2ag % f)dx in particular,

@ froax(By' o )=y (aB;’ of - (25’02) + 4, oN[fl) dx

® [(Bi ' og) %8s = [ (oz Bylog— (222) + A, oN(ra[g]) dx

(iv) fr(By og)xGux(By o f) = [o((Azo N [gD*(B] 0 £)~(By  og)*(A1oN £1)) dx
in particular:
@ frOu* (Bl o f)= [ol@B' o f — Aro N[ fDdx
®) fr(BF' 0 g) %8y = [o(A2 o N gl —a By 0 g)dr.
Proof. Direct verification is obtained using theorem 1; the equalities (3.5)}-(3.6); the

fact that any of the multiplication by A;, A, B;, B operators is an automorphism of
CH{; H(T) x H(C)).

Theorem 7. (Variants of the Cauchy integral theorem for quaternionic Maxwell functions.)
Let g € M), f € M(KQ). Then

(i}
d((By' og)yx g (B o f)y=—20g % fx
d(Gax(B7' o f)) = (a-B;‘ of— (z?fz))dx
d((Bz']og)*Erst)=(a-B;‘og—(zgz))dx
(ii)
d((B; og) %G x (B 0 f)) =0
d@u*x(Bilo ) =a- B o fdx
d((BlT' o g) x&y) = —ch{] cgdx
(iii)
f(B{] og)*&st*(Bz"of)=—2ozf glx) % f(x)dx
r Q
- - - 0
£03l*(32’of)=L(a-leof—(2f2))M
- - - 0
j;(leog}*crsl=j§;(a-leog—(232))dx
{iv)

f(B;‘ o) *Gux (B o =0
r

f&st*(Bl'"of)=aef Bi'o fdx
r [+
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f(g;' 0g)*by = —af B;'o gdx.
r e
Proof. The result is a direct corollary of theorem 5. O

Now we are going to introduce the Cauchy kernel for the quaternionic Maxwell function
theory, i.e. the fundamental solution of the operator A for the ‘left’ theory and the
fundamental solution of the operator N7 for the ‘right’ theory. Introduce the notation:

Ep o= B;oAgoNoBzoAlo[(gi)}. (3.13)
Then (3.8) immediately gives

NUCN'“]=N°B‘°A2°N°320A'|:(gi)]

=A]"o(A+)\.)EgoAlo[(g")} =8
A

and so Ky, is the fundamental solution. There is a direct connection between the
quaternionic Maxwell-Cauchy kernel Ky, and the corresponding Cauchy kernels X, and

Ko of the hyperholomorphic function theory. We have

Knaei=BloAzoNoBoAo [(gi)] {use (3.6))

so that finally

o—o 0 o
]C,Af_g:B]O( 0 _(a_]_a))o(lcﬂ). (3.14)

Furthermore, all factors in (3.13), besides A, are C-valued, and so nothing will change if
we substitute N by A¥? which means that Ky, serves both for the left and for the right
theories.

Introduce the analogues of the operators ¥ K, and ¥ 7, given earlier:

Kol flx) =B o [P(C"1 o Kyalt — ) # 8 (B o i) (3.15)

Ty ol f1(x) = Bro L(C“IKJN.u(x — )} % (Ay 0 f)(r)dr. (3.16)

Theorem 8. (The Borel-Pompeiu (= Cauchy-Green) formula for quaternionic Maxwell
functions.)
Let 2 be a bounded domain in R?* with the closed Lipaunov boundary I' = 3£2; let
f € CH&: H(C) x H(C)) N C($2; H(C) x H(T)). Then
@) = Knal F100) + T - NTF1(2) (3.17)
for ¥x = 2.

Theorem 9. (Right inverse to the quaternionic Maxwell operator.) Let f € CO#(Q)NC(),
0 < u < 1. Then in 2 the equality

N Ty ol FHx) = fx) (3.13)
holds,
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Theorem 10. (The Cauchy integral formula for quaternionic Maxwell functions.) Let
f e M(; H(C) x H(C)) N C(Q; H(C) x H(C)). Then

Flx)y = Knol flx) (3.19)
for ¥x € Q.

Having in mind the analogues of the Plemelj-Sokhotski formulae, the Morera theorem
and other properties of (., o)-hyperholomorphic functions [23,26, 2], the corresponding
theorems for quaternionic monochromatic functions can easily be obtained. Then, of course,
we can obtain them for the usual time-harmonic Maxwell equations as a restriction of the
above results onto the three-dimensional case (see [20, 23, 26]). It should be noted as well
that (¥, &)-hyperholomorphic function theory is closely related to the theory of spinor fields
(see [22,26]) which leads to a natural connection between electromagnetic and spinor fields.
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