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Abstract. The theory of quaternionic a-hyperholomorphic functiom (synonyms: monogenic, 
regular. spatial holomorphic vectors) is currently developing rapidly. In particular, many in$@ 
formulae with explicit reproducing kemels have been obtained. In ulis work we establish a 
one-to-one correspondence between time-hamonic (= monochromatic) electromagnetic fields 
and pairs of 'muhrally conjugate' hyperholomorphic functions. This leads lo the Cauchy-type 
integral associated with Maxwell's equations. Some main integral formulae for Maxwell's 
equations involving this Cauchy-type integral are obtained. I1 should be mentioned that, in facf, 
we introduce and study a somewhat more general quatemionic object which has better algebraic 
and analytic properties than the 'physical' Maxwell operator and which conlains the latter as a 
special case. 

0. Introduction 

Since J C Maxwell mote and published his famous equations, they have been investigated 
in a large number of works. There probably exists no fewer works generalizing these 
equations in many diverse directions. There is no need to spend many words explaining 
the reasons for such phenomena, they are evident: the importance of the subject. At the 
same time, the necessity of studying the equation for more than a century bears witness to 
the absence of a sufficiently complete theory for Maxwell's equations. 

In the present work we make an attempt to construct a function theory associated with the 
monochromatic (in the literature the synonym 'timeharmonic' is often also used) Maxwell 
equations with constant coefficients, in the framework of exploiting hypercomplex function 
theory. 

Various hypercomplex approaches to studying the classical Maxwell equations have 
more than a century of history, starting from the work of Maxwell himself (which sometimes 
surprises both mathematicians and physicists). There exists a well known reformulation of 
these equations in vacuum in quaternionic terms (see e.g. [34,5,16,30.17,1,19]), which 
allows some fundamental physical laws to be rewritten in a space-saving form. This is the 
very case in which such a phenomenological simplification is a real discovery influencing 
the development of a physical theory. 

Formally, this leads to a partial differential operator with quaternionic coefficients which 
has a null-set containing all solutions to the Maxwell equations. So the problem arises as to 
whether this null-set possesses a well-developed function theory. The latter means a deep 
structural analogy with one-dimensional complex analysis which provides, first of all, for 
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the existence of an integral representation for the null-solutions with a good analogue of the 
complex Cauchy kernel. Only in this case can we expect to get a theory (almost) as rich 
as the theory of holomorphic functions of one complex variable. 

For many specific radio engineering, hydroacoustical and geophysical models it 
is natural and quite sufficient to limit the study to the time-harmonic case (see e.g. 
[14,28,6,18,10,15,7] and many other books and articles). The main reason is contained, in 
fact, in the Fourier analysis together with the principle of superposition: an electromagnetic 
wave is a superposition (or, in other words, a linear combination, finite or numerable) 
of elementary, periodic-in-time waves. Of course, technically the time-harmonic case is 
simpler but at the same time, even for that case, many profound physical properties are 
not understood and explained. For example: the behaviour of the electromagnetic vector 
field near and on the boundary of a spatial domain until now has been far from having a 
sufficiently complete description. Most of what is known is contained in 161. see also the 
'less rigorously mathematical' book [36] where many interesting results and ideas can be 
found. It is written in traditional vectorial language (as is [6]) but there are some important 
hints as to how to develop the corresponding hypercomplex approach. 

The main difference between our work and that mentioned above [34,16,17, I] 
and others in this direction, consists of the following. We not only rewrite the 
Maxwell equations in a space-saving form (which generally speaking would not give 
essentially new information) but also with the aid of a simple matrix transform we 
imbed the time-harmonic electromagnetic field theory, which is difficult to treat, into the 
sufficiently developed [29,12,13,27,35,4,31,U-25,21,26] theory of or-hyperholomorphic 
biquatemionic functions. This allows new facilities for soIving the boundary value 
problems arising in electrodynamics because, following the deep structural analogy with 
one-dimensional complex analysis and having the Cauchy-type operator associated with 
Maxwell's equations (see section 3), one is able to analyse and to solve the analogues of 
the Riemann and Hilbert problems as well as some inverse problems [l I ]  for electromagnetic 
fields. For some results in this direction we refer the reader to [26]. 

Let W(@) denote the algebra of complex quaternions (precise definitions and some 
properties are given in section I), and let Q be a domain in W3. 

In a series of our works 123-261 (see also [21]) we have constructed a function theory 
for the null-solutions of the operator 
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where (Y E W(Q, M" denotes an operator of multiplication by or on the right, and the set 
@ := (e', @', !k3) is chosen in such a way that ensures a factorization of the Helmholtz 
operator: if 

a SD, := M" - k*k. 
k=l 

then 
*Da. $Dm = *Do,. *De = Mu' +Ani  (0.3) 

A i  being the Laplacian in W'. 
It appears that this function theory alone (we call it a (3, or)-hyperholomorphic function 

theory) possesses all the necessary peculiarities of one-dimensional complex analysis. 
Moreover, as was shown in [23,20,21,26], each component of the electromagnetic vector 
field (E,  H )  is a linear combination of two purely imaginary quaternionic functions: one 
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of which is a null-solution of (0.1); and the other a null-solution of its conjugate (0.2), for 
some specific value of a. 

Thus we have reduced a theory of monochromatic solutions of the Maxwell equations 
to hyperholomorphic function theory which conserves all the essential properties of one- 
dimensional complex analysis, and so these properties can be obtained for monochromatic 
waves. 

It is important to mention that, in fact, we treat a somewhat more general quaternionic 
object (for obvious reasons we call it the quaternionic Maxwell operator). It has better 
algebraic and analytic properties compared with the 'physical' Maxwell operator, and it 
contains the latter as a special case. 

Besides the introduction, the work consists of three sections. Section 1 contains a 
very brief description of the common Maxwell equations. Some necessary functional 
spaces are also introduced. Section 2 contains the necessary mathematical tools. The 
definition and basic properties of complex quaternions are given. Then we explain what 
an a-hyperholomorphic function is together with its main properties. Let us stress that for 
(Y # 0 all this is quite new, and it i s  almost unknown both among mathematicians and 
physicists. Just for this reason we put it in a special section. 

Section 3 is central. First of all we establish an explicit connection between the Maxwell 
operator and a pair of 'mutudly conjugate' quaternionic operators of the Cauchy-Riemann 
type which generate the exact analogues of the usual holomorphic (= analytic) functions of 
one complex variable. Then in theorem 5 the null-set of the three-dimensional HelmhoItz 
operator is decomposed into the direct sum of two functional spaces each of which is a 
'rotated' null-set of the quaternionic Maxwell operator. In theorem 7 the variants of the 
Cauchy integral theorem for the Maxwell functions are formulated. Then we introduce 
the analogues of the Cauchy-type operator and T-operator corresponding to MaxwelI's 
equations. Finally we give three theorems which show how the introduced operators work. 

1. Maxwell's equations 

Let 0 denote a domain in R3, and let E and H be the corresponding electrical and 
magnetic components of an electromagnetic field in 0. We assume that a medium in S2 
is homogeneous and that there are no currents and charges in 0. If an electromagnetic 
field ( E ,  H) is timeharmonic (or monochromatic which is a synonym) then it satisfies the 
following Ma%well equations: 

ro tH  = oE 
d ivH = O  divE = 0 

ro tE  = i w p H  

where U := U *  - iwc is the complex electrical conductivity; E is the dielectric constant; 
p is the magnetic permeability; U" is the medium electrical conductivity which is inverse 
to its electrical resistivity: U *  = p- ' .  It is known also that in this situation the complex 
vector fields E and H satisfy the homogeneous Helmholtz equations: 

A E + h E  = O  (1.3) 
AH +AH = 0 (1.4) 

where h := iopo* + w2pe = iopu  E C, 01 := &(Rea > 0) is a medium wavenumber. 
For any vectors f and g by the definitions 
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(1.6) . .  

(1.5) and (1.6) are called, as in the case of real coordinates, the scalar and vector (= cross) 
product respectively. Equality (1.5) defines a @-valued bilinear form over C, the equality 
(1.6) defines a @-valued bilinear form over C. 

Remark. It is easy to see that the equalities (1.2) are deduced directly from (l.l), and 
so there is no need to include them in the Maxwell system. However, in many physical 
sources, books and articles, the equations (1.2) are included explicitly, and we follow this 
tradition here. 

Let US remember that any solution of the system (1.1141.2) is ‘orthogonal’ with respect 
to the bilinear form (1.5): 

(E ,  H )  = 0 (1.7) 
(see the proof, e.g., in 1151). 

Equation (1.1) can be rewritten in the matrix-vector form 

( “  rot -i@p -rot>(;)=o 

and hence we can consider the operator defined by the matrix on the left-hand side of (1.8): 
M : = ( “  -rot ) 

rot -hf i  

Its natural domain is C ’ ( Q  C3 x C3). Taking into account (1.2) let us introduce for 
k s N U ( 0 )  

(1.10) ek :=?(S2;C3 xC’) : = { ( f . g ) l ( f , g ) ~ C ~  xC33;d ivf=divg=0) .  
We will call the operator 

the timeharmonic Maxwell operator. It is essential to note that maps a solenoidal 
(= diverge?celess) vector into a solenoidal one reducing the smoothness: if (f,g) c E*, 
(U, v) := M [ ( f ,  g)]  then (U, U) E el. 

A :=&/E‘ (1.11) 

2. Basic facts of hyperholomolphic function theory 

Let E4 be a set of the real quaternions. This means that elements of W are of the form 
Q = Ck,ou&, where {UkIk E $ := W3 U [o]; i ~ 3  := (I, 2.3)) c B; io is the unit; i l ,  i z ,  i 3  
are called the imaginary units, and they define arithmetic rules in H: by definition i; = -io$ 
k E N3; iliz = 

Natural operations of addition and multiplication in €3 turn it into a non-commutative 
field (= a skew field). There is a main involution in W called the quaternionic conjugation, 
and it plays an exceptionally significant role. This involution is defined in the following 
way: 

3 

. .  = i3, i2i3 = - i 3 i ~  = il, i3il = -ill) = 12. 

- - 
10 := 10 ik = -4 k EN? 

and it extends onto H by R-linearity, that is, for Q c H 
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Note that 
3 

a .  a = a ,  ii = xu; = la[& =: IaI& (2.2) 

Therefore for a E W\{O) a quaternion a-’ := $5 = &? is an inverse to a. We should 
mention also the very important property of the quaternionic conjugation: for V{a, b}  c H 

k=O 

I![ . 
_ -  
a ,  b =  b.r? (2.3) 

or 
Z ( U .  b) = Z(b) Z(U). (2.4) 

For our purposes we need the notion of a complex quaternion. The set of complex 
quaternions W(@) consists of the elements a = xi=oUk . ik where [ik] is as described 
above, (q) c @, the set of usual complex numbers with the imaginary unit i. By definition 

i . i k = i r . i  k E F $  

Arithmetic rules are defined in H(@) just as in MI. It is obvious that H is a real subalgebra 
in Ell(@). Each element a E H(@) can be represented in the form 

(2.5) 

Conjugation acts only on the quatemionic units, not on i ,  in (2.1). The properties 

a = ($1) + i , = a ( l )  +.(a . i 
where {a(’), dZ)] c W. 

(2.3)-(2.4) remain true but instead of (2.2) we have 

= 1a(3)12 - I U ( ’ ) ~ ~  + Zi(a(’),a(Z)) E @ (2.6) 
where la(‘)[ stands for the usual module of a real quaternion (see (2.2)), (a(’), a(’)) a scalar 
product of two four-dimensional vectors. (2.6) means that 

3 

a ’ 6 # lal& := lakI2 = la(’)lz + lU(z)lz 

k=O 

and that H(@) has zero divisors. The set of all zero divisors we denote by 6, i.e. 

6 := [a E W(@)la # 0; 3b # O a b  = O}. 
Let GH(@) denotes the group of invertible elements from HI(@): GW(@) := H(C)\6U{O). 
Then for any a E GW(@) the quaternion a-’ := Zi/(aci) is its inverse. 

From representation (2.5) it clearly follows that the set of complex quaternions is 
isomorphic as a real vectorial space to the set of octonions (Cayley numbers). So the 
difference between the sets lies on the algebraic level. By the definition of octonions 
the additional imaginary unit i anticommutes with i k ,  k E N3 and, as a consequence, the 
algebra of octonions does not enjoy the property of associativity against the algebra of 
complex quaternions (see, e.g., [32,91). 

Denoting for a E H or a E H(@) 
3 

=: sC(U) a := ‘ j k  =: VWt(U) 
k= 1 

we can write 
a=ao+a. 
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cq is called the scalar part of a quaternion a,  U is called the vector part, or the purely 
imaginary part. Using the notation (1.5)-(1.6) we have, for any complex quaternions a and 
b. 

V V Kravchenko and M V Shapiro 

a . b = (a0 + U )  * (bo + b )  
= ao. bo - ( U ,  b) + a o b C b o ~  + [ U ,  b]. (2.7) 

This equality takes the most impressive form if = bo = 0 

U b = - (U ,  b) + [U .  b]. (2.8) 
Equality (2.8) contains three types of multiplication of three-dimensional vectors, and it can 
be used to imply and to explain all the rules of scalar and vector products. 

We shall consider W(C)-valued functions defined in Q: 

f : Q + Ell(@). 
The notation Cp(Q; H(@)), p E N U  (01, has the usual component-wise meaning. If a is a 
fixed E(@)-valued function, then MU and "M are the operators defined on a set of functions 
[f] by the rule 

M"[fl:= f a  " M [ f ]  := a f .  

Let + := ($',+', +3] c H and Sc(+') = Sc(@') = Sc(@) = 0. Thus $ is a set 
of thee-dimensional vectors. Assume, in addition, that @ is an orthononnalized system. 
Sometimes we shall call + a structural set On a set C1(Q; W(C)) define the operators *D 
and D* by the equalities 

Let A be the three-dimensional Laplace operator: A = xi=, at. Define A on the H(C)- 
valued functions by the equality 

Then on C2(Q; H(Q) the following equalities are hue: 

A =  * D D D = - * D * D = D * D ~ = - D * D * ,  (2.11) 

For details see, for example, [331. 
Let A B C\(OJ and let [Y denote an arbitrary fixed square root of A in IN(@). i.e. a 

solution in H(C) of the equation ci2 = A. This A generates the thee-dimensional Helmholtz 
operator 

AA := A + A  (2.12) 

which acts on Cz(Q; IN(@)). For an arbitrary fixed set @ and for the above stated (Y let us 
introduce the operators 

(2.13) 
(2.14) 
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We shall call the operators (2.13) the left mutually conjugate Cauchy-Riemann operators 
and, for the operators (2.14), the word 'left' changes for 'right'. From (2.11) it follows that 
the following equalities are true: 

AA = * D e ,  *D. = *De *Da = m D * .  =D* = a D * .  aD*.  (2.15) 

They give the factorization of the Helmholtz operators with a complex parameter A. Thus a 
family (depending on the parameters $ and a) of the operators (2.13) and (2.14), factorizing 
the Helmholtz operator, is obtained. 

Let us fix $, a, Q and introduce the sets 
*!nZ&Z; NI(@)) := ker *Da (2.16) 

Sometimes, elements of these sets will be referred to as left- (correspondingly right-) 
($. a)-hyperholomorphic in QW(@)-valued functions; this name will be shortened if 
misunderstanding cannot arise. The sets (2.16) will be called the classes of ($ ,a)-  
hyperholomorphy shortly. Any such left (correspondingly right) class forms a right 
(correspondingly left) [calc E @)-submodule of an W(C)-module C'(S2; W(@)). It is clear 
that for some special values of a this fact could be specified. 

The equalities (2.15) mean that ($, a)-hyperholomorphic functions of a class C2 are 
metaharmonic in Q, that is they belong to ker AA. 

Investigation of the time-harmonic Maxwell operator requires us to consider, as a rule, 
the case $ = qst = [ i l ,  i z ,  i3), for which we will use notation 

.!nZ*(Q; HI(@)) := ker aD*. 

For this special case the vector representation of a quaternion (see earlier) gives rise to the 
following representation of the operators 'ID and "D,: for Vf E C'(Q; W(@)) 

= grad fo - div f + rot f. (2.18) 

Hence 

''De[ fo + f l  = - divf - (f. a)  + aofo fgradfo  + rotf + I f ,  a] + fo -01  + W O .  f. 
(2.19) 

In what follows let 0 # A E @, a E @. 
Theorem 1. 1231. Let 7&(Q,W(C)) := kerAi be the space of metaharmonic functions; 
denote * j r a  := &*De, *IIn, := *jral'H~. 

Then 
(i) The following correlations are true: 

(a) *ni = *nu, 

(c) *n, + 
(d) )(*rIn,) = ker(*jrJC2); 

(b) * n u .  *nm = *ne, *ne = 0. 
=-I, the identity operator, 

(ii) For *'He := ! ~ L ( ' H A ) ,  'HA = *'& @ *Xu; 
(iii) *'Ha = ker($u,@); 
(iv) ' H h  = *ma CO *ma. 



5024 

Theorem 2. (The Stokes formula congruent with the notion of ($, a)-hyperholomorphy.) 
Let [f, 8 )  c c'(fi2; m(C)). Then 

V V Kravchenko and M V Shapiro 

(i) 

(ii) 

where := ~ ~ = l ( - l ) k - ' @ k G k  and d.?' denotes, as usual, the differential form 
drl A dx2 A dx3 with the factor dx' omitted. (Note that if d r  is an element of the 
surface area in R3 then IU+,~ I = d r  and if r is a smooth surface, then 

3 

c#,x = @'nk(~) d r  
k=l 

where n := (nl, nz, n3) is a unit vector of the outward normal on r at the point x E r.) 
Theorem 3. (Variants of the Cauchy integral theorem for ($, a)-hyperholomorphic 
functions.) 

(i) Let f E +"=(a; W(C),g E m(C)). Then 

d(g 
d(c*,x ' f) = -af 
d ( g . ~ e * ~ )  = -agdX. 

f) = -201 ' 8 .  f 

(ii) For the same functions 

(iii) If f E *ma, g E ,id then 

J, 8(x)  ' ' f (x)  = 0. 

Let 6': denote the fundamental solution of the Helmholtz operator: 

(2.20) 

where a2 = A, R e a  > 0. In particular, for a = 0 we obtain 6'0 := 6'$, the fundamental 
solution of the Laplace operator. For the calculations, the following correlation which can 
be easily obtained is useful: 

1 
4ir 

e:(X) = e 0 w  7 iru- + O(IXI) 
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when 1x1 --f 0. Below SA := 6'c participates only. For Sf all can be done by analogy. 

the operator $0, is given by the formula 
Now the fundamental solution (= the Cauchy kernel for the corresponding theory) of 

IC,,&) := ,D*[BAI(x) = *D&'A](X) 

This Cauchy kernel generates, as usual, two important integrals: 

I C d x  - 5 ) .  q , r  ' f(s) (2.22) 

The following propositions hold. 

Proposition 1. (The Borel-Pompeiu (= Cauchy-Green) formula for (+, or)-h.h.f. theory.) 
Let Q be a bounded domain in R3 with a Liapunov boundary r = 852; f E C'(Q; H(C))n 
c(fi2; W(C)). Then 

f ( x )  = 'K.[fl(x) t 'Tu. ' D o , [ f ] ( x )  forvx E Q. (2.24) 
Pmposition 2. Let f E co,P(Q) n ~ ( f i ) ,  0 e p < I then in Q 

(2.25) 
Proposition 3. (Cauchy integral formula.) I f f  satisfies the condition of the Borel-Pompeiu 
formula and f E %L(n) then 

f ( x )  = '~,[f](x) for vx E Q. (2.26) 

Remark. For the case or = 0 the above theorems have been known for a long time (see, 
e.g.. [3] as well as [8] for the Clifford algebra-valued functions). 

*& . " J f l ( x )  = f ( x ) .  

3. Relationship between the time-harmonic Maxwell operator and the quaternionic 
Cauchy-Riemann operators 

There exists an intimate connection between the time-harmonic Maxwell operator M 
and the Cauchy-Riemann operators D,, &,-and hence between the time-harmonic 
electromagnetic fields and hyperholomorphic functions. We now start to discuss this 
connection. 

Equality (2.18) means, in particular, that on the solenoidal vector fields D acts as the 
operator rot: if fo = On, div f = 0 then 

D[f] = rot f. (3.1) 
This pushes us to introduce the following matrix operator (compare with (1.9)): 

N := (' -' ) : C1(Q; W(C) x HI(@)) + Co(n; W(C) x W(C)). D -imp 

We will call it the quaternionic Maxwell operator. Its restriction g onto C3 x C3-valued 
functions has the form 

div -rot 
- div +rot; -imp 



5026 

and hence does not coincide with M (moreover, fl mapSAsuch functions onto W ( Q  x U(@)- 
valued functions). But the restriction NI?' gives just M :  

V V Kravchenko and M V Shapiro 

A = Nle'. (3.3) 
In particular, this justifies, in our opinion, the name 'quaternionic Maxwell operator' 

for N.  Functions from the k e r N  will sometimes be called 'quaternionic monochromatic 
functions' and the notation 9(Q) will be used. 

We can now establish the connection between the operator N and the mutually conjugate 
Cauchy-Riemann operators introduced earlier. Indeed, denoting 

"-1 

A I  := ( -ff -U B1 :=:('-I 2 ff-l  ff-l ) 
(both matrices are invertible) we can easily verify the equality 

(3.4) 

(3.5) 

Multiplying both sides of (3.5) by the matrix ( y  A) on the left-hand side and on the 

right-hand side we arrive at 

with the invertible matrices 

A comparison of (2.5). (3.5) and (3.6) leads to the equality 

or, equivalently. to the equality 

(3.7) 

(3.8) 

with 

Let E,  denote the unit (m x m) matrix. Equality (3.8) can be considered as the factorization 
of the Helmholtz operator (A + A )  Ez. acting on U(@) x W(@)-valued functions, into the 
product of two operators AlNBl and AzNBz each of them being similar to the quaternionic 
Maxwell operator N.  Equality (3.9) shows that the other operator, being similar to N ,  
namely, the operator ANB, is a square root of (A + A)&. 
Theorem 4. (Connection between the sets of quaternionic monochromatic functions and 
quaternionic hyperholomorphic functions.) Let Cn := ker N be the set of all quaternionic 
monochromatic functions, % (Q) be the set of all left-a-hyperholomorphic functions. Then 

(3.10) 

where the invertible matrix 8 2  is given by (3.7) 
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Of course this assertion, being important by its significance, is a very simple corollary 
of (3.5). 

Theorem 5. Let Rf' := ker(A + A ) &  be the set of all metaharmonic E(@) x E(@)-valued 
functions. Let 

1 1 
2a 2u q1 := - A ~ N B ~  q2 := - A ~ N B ~  (3.1 1)  

(3.12) 

(c) Q i  + Qz = 1;  
(d) range ( Q l )  = ker(zJC2) x ker(?*lc*) 
ker(ir,[C2) =Xu x ga; 

(ii) For X L , ~  := Ql(Rr'); X Z , ~  := Q Z ( X : ~ ' )  

x R u ,  range ( Q z )  = ker(5a,lC2) x 

XHp' = XI,* @ X2.0 

holds. 
(iii)  HI,^ = ker(q21C2); R Z . ~  = ker(qjlC2); 
(iv) X f )  = ker(qzlC2) @ ker(qlIC2) = B;'(ker(NIC*)) EB B;'(ker(NIC2)). 

Equality (3.2) defining the quaternionic Maxwell operator contains the left operator D. 
This results, in particular. in the fact that in (3.5)-(3.6) we have just the left mutually 
conjugate Cauchy-Riemann operators. Of course we can obtain, completely symmetrically, 
the 'right-hand side' results. Denote by N"' the right quaternionic Maxwell operator: 

The following equalities are true: 

where A ] ,  A2, BI, B2 are from (3.4) and (3.7). It is easy to write the analogues of equalities 
(3.8)-(3.9) and theorems 4 and 5. In addition to the already intioduced multiplications, we 
shall need below the usual multiplication of matrices. Let us denote this operation by '*'. 
Theorem 6. (Variants of the Stokes formula congruent with the notion of the quaternionic 
Maxwell function.) Let f = (f', f 2 ) ,  g = (g], g2), If, g) c C'(f2; EX(@) x W(@)). 

Define C?* := (a$; U$) .  Then 
(i) d((B;' o g) *ess,* (B;' o f)) = ((A2 ON(') o g) (B;' o f) + (B;' og) * (A2 o N o 

) then substituting subsequently g := h and f) - Zag * f) dx; in particular, if h := 

.f := h we get 
( 

(a) d(zSs, * (B;] o f)) = (Y . B;' o f + o N [ f ]  - 
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( 2 9 )  dx 
@ ) d ( ( B ; ' o g ) * & ) =  ~ i ~ B ; ' ~ g + A z o N ( ~ ) [ g ] -  ( 

(ii) d((B;'og)*&*(B;'of)) = ((A2onrC')og)*(B;' of)-(B;'og)*(AloNof)) dx 
in particular, we have 

(a) d(& * (B;' o f)) = (01 ' B;' o f - A I  oN[f l )dx 
(b)d((B; 'og)*&; t )  = (A20N(')[gl-a.B;'0g)dx 

(iii) J r p - I  o g) *es,, * (B;] o f) = J n ( ( ~ z  o N ( r ) [ g l ( x ) )  * (B;' o f ( x ) )  + (B;' og) * 
(AZ o N o f) - Zcug * f) dr in particular, 

(a) l, & * (B;' 0 f) = J, (01B;l 0 f - ( 2;~) + Az 0 N[fl) dx 

(b) J,(B;' o g) * & = JR 01 . B;' o g - z + AZ 0 N"'[gl dw ( (: ) ) 
(iv) J,(B;' o g ) * 6 d B ; ' o f )  = ~R((AzoN"'[gl)*(~;'of)-(~;'~g)*(A~o~[fI)) dx 

in particular: 
(a) 1, CSt * (B;' o f) = Jn@B;' 0 f - A I  oNIf I )dx  
(b) J,(B;' o g) *Zst = JR(Az oN'"[g] -01B;l o g) dx. 

Proof. Direct verification is obtained using theorem 1; the equalities (3.5H3.6): the 
fact that any of the multiplication by A I.  A*, B1, Bz operators is an automorphism of 
@'(a; W(@) x W(C)). 

Theorem 7. (Variants of the Cauchy integral theorem for quaternionic hlaxwell functions.) 
Let g E W ( a ) ,  f E n(s2). Then 

(0 
d ( ( B ; ' o g ) * ~ ~ [ * ( B ; ' o f ) ) = - 2 a g * f d x  

d(& * (B;' o f)) = 

d((B;' o g) * &) = ( U .  B; I 0 8 - ($)) dx 

( 2 9 )  dx ( I  
(I. B; o f - 

(ii) 

d ( ( B ; ' o g ) * & * ( B ; ' o f ) )  = O  
d(& * (B;* o f)) = 01 ' B;' o f d x  
d ( ( B ; ' o g ) * ~ ~ , , ) = - c y B ; l o g d X  

(iii) 

/ (B; '  og) *est* (6';' o f )  = -2a g ( x )  * f ( x ) d x  
r S, 

( 2 ; 4 k  s, 
/(B;'  r og ) *&  = / R ( 0 1 .  B;' o g  - (29 )dx 

5s;t * (B;I o f) = S, (U . B;' 0 f - 

(iv) 

/ ( B ; '  o g) * SSt * (B;' o f) = 0 

L$[* (B;' of) = E / ,  B;' o f d x  

r 
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s ( B ; ' o g ) * ~ ~ i = - f f ~ B ; ' o g d r .  r 

Proof. The result is a direct corollary of theorem 5. 0 

Now we are going to introduce the Cauchy kernel for the quaternionic Maxwell function 
theory, i.e. the fundamental solution of the operator N for the 'left' theory and the 
fundamental solution of the operator N") for the 'right' theory. Introduce the notation: 

K N , ~  := B1 o A2 O N O  Bz o A1 o (3.13) 

Then (3.8) immediately gives 

and so K N . ~  is the fundamental solution. There is a direct connection between the 
quaternionic Maxwell-Cauchy kernel K N , ~  and the corresponding Cauchy kernels Km and 
Em of the hyperholomorphic function theory. We have 

(3.14) 

Furthermore, all factors in (3.13). besides N, are C-valued, an inge if 
we substitute N by N(') which means that KN.= serves both for the left and for the right 
theories. 

io nothing will , 

Introduce the analogues of the operators *K, and *T, given earlier: 

K N , a [ f l ( x )  := BI 0 /(c-' OKN,@(X - r ) )  *cs,t.r * (BL' 0 f)(s) (3.15) 

7 j~ .~[ f l (x)  := BI 0 (C-'K,v.dx - r ) )  * (A1 0 f)(r)d.c. (3.16) 

Theorem 8. (The Borel-Pompeiu (= Cauchy-Green) formula for quatemionic Maxwell 
functions.) 

Let L2 be a bounded domain in R3 with the closed Lipaunov boundary r = 80; let 
f E c'(Q; w(C) x w(c)) n c(B; w(C) x Bl(C)). Then 

f(x) = KN,c[fl(x) TN.u .N[fl(x) (3.17) 
for Vx E 0. 
Theorem 9. (Right inverse to the quaternionic Maxwell operator.) Let f E Co,@(Q)nC(fi), 
0 c /I < I .  Then in Q the equality 

N '  TN.a[ f l (x )  = f ( x )  (3.18) 

Q 

holds. 
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Theorem IO. (The Cauchy integral formula for quaternionic Maxwell functions.) 
f E N(n; w(C) x mi(C)) n c(Q w(@) x w(@)). Then 

V V Kravchenko and M V Shapiro 

Let 

f ( x )  = K~.e [ f l (x )  (3.19) 

for Vx E 0. 

Having in mind the analogues of the Plemelj-Sokhotski formulae, the Morera theorem 
and other properties of (@, a)-hyperholomorphic functions [25,26,2], the corresponding 
theorems for quaternionic monochromatic functions can easily be obtained. Then, of course, 
we can obtain them for the usual time-harmonic Maxwell equations as a restriction of the 
above results onto the threedimensional case (see [20,23,26]). It should be noted as well 
that ($, a)-hyperholomorphic function theory is closely related to the theory of spinor fields 
(see [22, 261) which leads to a natural connection between electromagnetic and spinor fields. 
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